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THE MULTIPLE SCATTERING OF WAVES IN IRREGULAR MEDIA

By B. J. USCINSKI
Cavendish Laboratory, University of Cambridge

(Communicated by K. G. Budden, F.R.S.—Received 23 March 1967)
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When a wave passes through a large thickness of a non-absorbing medium containing weak random
irregularities of refractive index, large amplitude and phase fluctuations of the wave field can
develop. The probability distributions of these fluctuations are important, since they may be readily
observed and from them can be found the mean square amplitudes of the fluctuations. This paper
shows how to calculate these distributions and also the ‘angular power spectrum’ for an assembly
of media which are statistically stationary with respect to variations in time, and in space for direc-
tions perpendicular to the wave normal of the incident wave. The scattered field at a given point
is resolved into two components in phase and in quadrature with the residual unscattered wave at
that point. The assembly averages of the powers in these two components, and of their correlation
coefficient are found, and a set of three integro-differential equations is constructed which show
how these three quantities vary as the medium is traversed. The probability distributions of ampli-
tude and phase of the wave field at any point in the medium are functions of these three quantities
which are found by integrating the equations through the medium. An essential feature of these
equations is that they include waves which have been scattered several or many times (multiple
scatter). The equations are solved analytically for some particular cases. Solutions for the general
case have been obtained numerically and are presented, together with the corresponding prob-
ability distributions of the field fluctuations and their average values.
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1. INTRODUCTION
The passage of radio waves through the interplanetary medium (Hewish, Scott & Wills
1964; Cohen 1965) is an example of a general class of problems, often encountered in
other branches of physics, in which a plane wave passes through a large thickness of a
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610 B. J. USCINSKI

non-absorbing medium which has small irregular fluctuations of refractive index. The
present paper deals with the theory of this subject when

(a) theirregularities are large compared with the wavelength of the radiation so that the
wave is scattered through only a small angle by individual irregularities,

(b) the irregularities are weak so that, in a layer whose thickness is several times greater
than the average size of an irregularity, only single scattering is appreciable, and

(¢) the medium is very thick so that the wave field may consist predominantly of waves
which have been scattered several times.

These conditions hold for radio waves in the interplanetary medium and in some other
cases, for example, sound waves in the atmosphere or the oceans. Media of this type have
been called ‘weakly irregular’ media (Uscinski 1967). Condition (¢) means that effects of
polarization may be neglected. It should be noted that the theory may be extended to cover
the case where the total angular deviation of a multiply scattered wave is not small.

The main purpose of this paper is to show how to take into account the effects of multiple
scatter arising from condition (¢), and the probability distributions of amplitude and phase
of the wave field are derived for this case. Most carlier treatments of multiple scatter
have considered only the total scattered power. Because the medium is thick, the emerging
wave front may show large fluctuations of amplitude and phase, even though the medium
is weakly scattering. This paper does not deal with strong irregularities which could produce
large fluctuations after the wave has passed through only a thin layer of the medium.

Much work has already been done on ‘weakly scattering’ media. The angular distribu-
tion of the scattered power has been studied by Booker & Gordon (1950) and Bowhill (1961 5)
for the case when the incident wave is only slightly attenuated so that single scatter alone
need be taken into account. Some further statistical properties of the field emerging from
a thin scattering layer have been discussed by Bowhill (1957, 19614). The mean square
values of the amplitude and phase fluctuations of the wave field for the single scatter case
have been treated by Obukhov (1953), Chernov (1960) and Tatarski (1g61) using the
‘method of smooth perturbations’, while Chernov also derives the autocorrelation functions
for these fluctuations. The probability distributions of phase and amplitude of the wave
field are given by Uscinski (1g677) who discussed some limitations of the ‘method of smooth
perturbations’.

The angular distribution of the scattered power for the case when multiple scatter must
be taken into account has been discussed by Fejer (1953) and Howells (1960). Basic mathe-
matical treatments of multiple scatter have been given by many authors including Foldy
(1945), Tatarski (1964), Tatarski & Gertsenshtein (1963), Furutsu (1963), but much of this
work is of a formal nature and is difficult to evaluate in concrete cases. The ‘method of
smooth perturbations’ is modified by Tatarski (1965, 1967) to take multiple scatter into
account, and he gives expressions for the mean square logarithm of the amplitude of the
wave field.

This paper considers an assembly of scattering media which are statistically stationary
with respect to variations in time, and in space for directions perpendicular to the wave
normal of the incident wave. Averages taken over the assembly are indicated by angular
brackets { ), and the word ‘average’ or ‘mean’ always refers to an assembly average. In § 2
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MULTIPLE SCATTERING OF WAVES IN IRREGULAR MEDIA 611

the problem of determining, for this assembly, the amplitude and phase probability distri-
butions of the field is reduced to finding the quantities §}, S, (the average scattered power
co-phased and in quadrature, respectively, with the unscattered wave) and K (the un-
normalized correlation coeflicient of the scattered power). These quantities are defined
in §2, and in the later sections they are found, as follows.

A system of polar coordinates is introduced with polar angles 0, ¢, and with the z axis in
the direction of the incident wave normal. The medium is divided up into elementary
layers in such a way that the z axis is normal to each layer. An elementary layer is sufficiently
thin so that only single scattering of the waves incident on it need be considered. In § 3 the
scattering cross-section is derived for the power scattered into the direction #, ¢ by an
elementary layer when a wave is incident from an angle ¢, ¢’. The specific form of this cross-
section is then found when the irregularities have a Gaussian autocorrelation function, and
in § 4 it is further simplified for the case when the total angle through which the radiation
is scattered is small.

The counterparts of S}, S, and K are now considered for the power flux in a small solid
angle in the neighbourhood of the direction 8, ¢, and are designated by ¢, 7, and x. In § 5
relations are found which describe how ¢}, ¢, and « change when the waves are scattered
by an elementary layer. In § 6 these relations, together with the scattering cross-section, are
used to construct a set of three integro-differential equations which take multiple scatter
into account and describe the variation of ¢,, 7, and & as the medium is traversed. In § 7 the
physical significance of these equations is discussed. In § 8 they are solved analytically, for
some special cases, to give ¢}, 0, and « for waves which have traversed a thickness z of the
medium, and finally these quantities are integrated with respect to ¢ and ¢ to give S, §, and
K, respectively. Solutions for the general case have been obtained by stepwise numerical
integration of the integro-differential equations. The results are presented in §§10 and 11
together with the corresponding probability distributions of the phase and amplitude
fluctuations, and their average values at different distances in the medium.

2. STATISTICAL DESCRIPTION OF THE WAVE FIELD

The wave field in the scattering medium is described by the electric intensity £. The
statistical treatment used here of this field is similar to that used by Beckmann & Spizzichino
(1963). It has been shown elsewhere (Uscinski 19677) that polarization effects may be
neglected and £ may be treated as a complex scalar. It can then be represented in amplitude
and phase by a vector in the Argand diagram in which the Cartesian coordinates are u and v
(figure 1). The vector E is composed of the field E; of the unscattered incident wave, and
E, which is the resultant of the fluctuating scattered fields. The coordinate axis « is chosen
to be parallel to E, and the phase of the total field vector E, taken with respect to the
unscattered wave £ is .

Let R, I be the Cartesian components of %, and define the following average quantities

(R =S|, I»=S, (RI)=K (2-1)
These three quantities will be called the mean co-phased scattered power, the mean

quadrature scattered power and the un-normalized correlation coefficient of the scattered

power respectively.
76-2
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612 B. J. USCINSKI

The quantities (2-1) are taken relative to the unprimed axes. If a second set of axes with
primed coordinates ', v” is taken as a new phase reference differing from the former by an
angle y (figure 1), then the new values of (2-1), given by S}, §; and K’, are related to the
old by the transformation

81 =8, cos? y+S,sin? y + 2K sin y cos y,
Sy = 8, sin2y+ 8, cos?y— 2K sin y cos y, (2-2)
K" = (§,—8,) siny cos y+ K(cos? y —sin?y).
Special cases of these equations have been given by Hristow (1961) and Gnedenko &
Kolmogorov (1949).

F1cure 1. Scattered and unscattered field components as complex scalars in the Argand plane
together with the rotation of axes used in the transformations (2-2).

The two-dimensional probability distribution of the Cartesian components u, v of E has
been given, for this case, by Uscinski (19677) following Beckmann & Spizzichino (1963):

1 (u—E,)? 2K(u—EO)

w(u,v) = N exp{mw—ﬁw———-— [ A Zo)V _;_1’3:'} (2-3)
’ 2 (8 S, — K2)* 2(1—K?/5,5,) S S8, Sy

The loci of constant w are then ellipses in the z—v plane centred on the point (£, 0). A typical
ellipse is shown in figure 1.

The probability distribution of the amplitude |£] is obtained by expressing u and v in
polar coordinates u—|E|cosyy, v—|E|sing (2-4)
and integrating (2-3) over all phases ¢, while the phase distribution is obtained by inte-
grating over all amplitudes | E|.

When the symbols S}, S, and K are used, the above treatment refers to the total scattered
field arriving at a point in the medium. It may, however, be applied to that part of the field
consisting of plane waves with their wave normals in a small solid angle dQ between
0, 04-d0 and ¢, $+dg, where 0, ¢ are polar angles which use as polar axis the direction z of
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MULTIPLE SCATTERING OF WAVES IN IRREGULAR MEDIA 613

the wave normal of the unscattered incident wave (figure 2). In this case the quantities
corresponding to (2-1) for a point at distance z in the medium will be written

0y (Z: 0: ¢) dQ, 02(21 0: ¢) dQ: K(zﬁ 61 ¢) dQ (2'5)
respectively, where dQ =sinddfdg. (2-6)

9!
incident wave normal K

£

> 2

\
\

— DN ——
>

scattered wave normal

Ficure 2. Geometry of the incident and scattered waves.

3. POWER SCATTERED BY A THIN LAYER OF THE MEDIUM

Let x, y, z be Cartesian coordinates in space. The scattering medium is assumed to
extend to infinity in the x and y directions and to lie on the positive side of the plane z = 0.
The refractive index 7 of the medium is assumed to depart from unity by very small amounts.
Within the scattering medium let

n = ng~+ny (%0, Yo, Zo) (31)

where 7,, the average value of , is taken to be unity. The small deviation 7, is assumed to
be real, and x, y,, z, are the coordinates of a point in the scattering medium.

Now let the medium be divided into layers parallel to the plane z = 0, and of thickness L,
large compared with the average size of an irregularity, yet small enough to ensure that only
single scattering is important for waves incident on such an ‘elementary layer’. Let a plane
wave, with electric field given by (figure 2)

E, = Ejexp{—ik[zcos0' +xsin 0’ cos¢’+ysin ' sin ¢']}, (3-2)

be obliquely incident on a layer. The field of the wave scattered by this layer will now be
found. The result for normal incidence was derived in a previous paper (Uscinski 1967) and
the method may easily be extended as follows.
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614 B. J. USCINSKI

Let the scattered wave be observed in the plane z = const. which lies beyond the scattering
layer. The incident wave normal meets this plane at the point ztan ¢’ cos ¢’, ztan 8’ sin ¢’ z,
and the small horizontal displacements of the general point x, y from this point are given by

X=x—ztan0'cos¢’, Y =y—ztanl'sing’. (3-3)
Similarly let X, =xy—zptan ' cos¢’, Y, =y,—z,tanf’ sin¢’ (3-4)
which are small horizontal displacements of a point in the scattering layer from the incident

wave normal.
Then the incident wave (3:2) is

E; = Ejexp{—ik[zsect 4+ Xsin 0 cos¢’+ Y sin 0’ sin¢’]}. (3-5)

Now let the x- and y-components of the incident wave vector be
ky=ksinf’ cos¢’, k), = ksinl'sing’. (3-6)
Then (3:5) becomes E;, = E,exp{—i(kzsect +k . X+k,Y)}. (3-7)

The scattered ficld from one member of the assembly of scattering layers is now found by
the method set out in detail by Booker & Gordon (1950) and Budden (19654). The field
re-radiated from the dipole moment induced in a small volume dx,dy,dz, of the medium
is given by Budden (:bid. equation (11)). This is now integrated through the scattering
layer to give the total scattered field at the point », ¥, z

E(X,Y) = "L f f f ml xﬂ’?/o’zo exp {—ikH} dx, dy, dz,, (3-8)

) sec 0’

(XXt (YY) -smw{X X,) cosg'+ (YY) sin g’}
where H= 2(z—2z,) secﬂ’

(3-9)

The field (3-8) is now expressed as an ‘angular spectrum’ of plane waves by taking its
two-dimensional Fourier transform. It is shown in appendix A that the coefficient of the
plane wave Fourier component, whose wave normal vector has Cartesian components

ky k

% y>

2 — W
Flky k)= Eqk expgﬂml/kzsecﬁ f J‘ f f f 7y (%9, Yo ZO),CXP{ ihH)

L (z—z,) sect

x exp {i([k,—k,] X+ [k, —k,] ¥)}dx,dy,dz,dXdY, (3-10)

where the range of integration I/ may be made indefinitely large. The limits of the integrals

are discussed in appendix A. When the X and Y integrations are carried out the product
FF* is, from (A 8) of appendix A,

E2sec? k2 ) )
Fe = 2502 [(6) [mnd exp GL0G— k) (rg— )+ (b, ;) (v0—36)
—(a47) (20—2p) ]} dxo dyo dzo dxg dyo dzg,  (3-11)
where a-+y = $k{sec 0’ [sin% 0 —sin? "]+ tan? ¢’ [sin 0 cos g, —sin ' ]2}. (3-12)

Here ¢ = ¢—¢', ny = n, (x4, yo, 25), and xy, yo, 2, are simply a second set of values of %, y,, z,.
The limits of the integrals are -+ W for x, y,, %0, ¥, and 0 to L for z,, z;.
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MULTIPLE SCATTERING OF WAVES IN IRREGULAR MEDIA 615

For the component plane waves having £,, &, in the small range 0%, ok, the power crossing

unit area perpendicular to the z axis is, from equation (A7)

FF*

Equations (3-11) and (3:13) give the power spectrum for a single scattering layer. The
average value of (3-11). will now be found for an assembly of a large number of layers. It is
assumed that in (3-1)
ny = (2o) 7 (%0, Yo, Zo) , (3-14)
where the profile function y(z,) is the same for all members of the assembly and gives the
magnitude of the refractive index fluctuations, while n, is a stochastic function which is
statistically homogeneous and stationary with respect to the three variables x,, ¥, z, at least
over the thickness of an elementary layer. Its mean value is zero and its variance is unity.

Let p be the three-dimensional autocorrelation function of »,, defined by

p(&1,€) = (my(%, Yo, 20) 1y (%0 +& Yo+ 1, 20+ () ), (3-15)
where E=x0—%p, 7="Yo—Yo {=20—2. (3-16)
It is assumed that p is a Gaussian function and that the irregularities are isotropic in the

x—y plane with scale size r,. They may, however, be elongated in the z direction since it is
instructive to study how the axial ratio 7,/r, affects the scattering properties of the medium.

Thus

p(&1,0) = exp{— (E+7°) [rg} exp {—/rZ}. (3:17)
Further let 2X, = x0+x9, 2Y, =yo+Yye 2Z, = zy+ 2, (3-18)
Now set (3:16), (3-17) and (3-18) in (3-11) and take the assembly average. Then

Frey = BESCOIE [(6) [p(6,0,0) exp {—il(k,—K) €

+(k,— k) p—(a+y) (I} dEdp dCAX, dY, dZ,.  (3-19)

The limits for these integrations are discussed in appendix B. The function #2(z,) has been
taken outside the integral sign since it is assumed to be constant over a distance equal at
least to that of an elementary layer of thickness L.

The integrations in (3-19) are performed in appendix B to give

(FF*Y = E2ku2Lsec?0'nrir,
x exp {— 2r3k?(sin? 0 4-sin? ' — 2sin fsin 0’ cos ¢y) — 2r2(a+7)%.  (3:20)
Now the assembly average of the power crossing unit area perpendicular to the z direction,
for component plane waves with their wave normals in the small ranges 6 to +dd, ¢ to

$+dd is, from (3-13)
FF*y .
%ﬂ—zzozk%mﬁcosﬁdﬁ dg, (3-21)

where £%sin f cos ) is the Jacobian d(k,, ,)/9(0, ). The following change of variable is now

made: sin20 = ¢. (3-22)
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616 B. J. USCINSKI
Then the ratio of (3-21) to the power flux of the incident wave in the z direction E3/2Z; is
k%dtdg¢
Al
() 82k
— (g R L i, expl — 3+ —2(1)} cos ] — b -+7) e dg
= FLp(0',¢";0,9) sinf cos 6 df dg (3-23)

say, where £ is independent of 0, ¢, and the function p is chosen so that
2n rim
f f psinfcos0dfdg = 1. (3-24)
0o Jo :

If (3-23) is integrated with respect to ¢ (equivalently #) and ¢, it gives the ratio of the total
scattered power to the incident power flux for a slab of thickness L. Thus £(6', ¢") may be
found. It will be called the ‘coefficient for total scattering’. It is shown in the next section
that # may be taken as constant in cases of practical interest. Some properties of p(¢', ¢"; 0, ¢)
are also discussed in the next section.

The above formulae have been derived on the assumption that the incident wave is
a single plane wave with normal in the direction @', ¢’. 'The argument is still valid, however,
if the incident wave is part of an angular spectrum of plane waves consisting of those plane
wave components with their wave normals in the small ranges df’, d¢’ near ¢, ¢'.

4. SMALL ANGLE APPROXIMATIONS

The restrictions so far placed on the angles concerned must be carefully noted. In calcu-
lating the field of the waves scattered from an elementary layer it is required that only waves
scattered through small angles contribute to the scattered wave. This means that the angle
between the wave normals of the incident and scattered waves must be small. The angles
¢', 6 may, however, both be large and the expression (3-23) is still valid. In interpreting
(3-13), (8-21) and (3-23) as power crossing unit area perpendicular to the z direction, it was
assumed that ¢ and 0" are both small. Some further consequences of this assumption will
now be examined.

When the change of variable (3-22) is made, (3-12) may be written

a-+y = 3k[(t—1") -+t {tcos? g, —2(tt")E cos o+ L (t+1)}+...]. (4:1)
Now ¢ and ¢’ are small so that powers and products greater than the first may be neglected.
If the remaining term 3£(1—¢) is inserted in (3-23) it gives
(FF*) = 4n*fLp(0",¢'; 0, ) E§[R?

= E3kutLatrir_ exp [ — W3kt -+t —2(t') cos g} —72k2(t—1)2],  (4-2)

where ¢’ in the denominator of (3-23) has been neglected in comparison with unity.
Similar results have been obtained by other authors, most of whom make the further
approximation ¢ = sin?f ~ 62 in the exponent. Thus Fejer (1953) gave an expression which

is the same as (4-2) (with 0% for ¢, 0"2 for t') except that the last exponent involving 7Zis absent,
so that the effect of correlation of the irregularities in the z direction does not appear.
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MULTIPLE SCATTERING OF WAVES IN IRREGULAR MEDIA 617

Bowhill (19615) pointed this out and used a completely different method to derive the
angular spectrum of the scattered wave for a normally incident plane wave. If ¢ is set equal
to zero in (4-2) it gives Bowhill’s result (with 62 for ¢). The effect of 7, in (4-2), noted by
Bowhill (19614), is discussed later in §11.

The total scattered power flux for a normally incident wave may be found by integrating
(3-21) over all angles, after making the change of Varlable (3-22) and setting in (FF*) as
given by (4-2) with ¢’ = 0. Thus

(EE*)o. _ EK
27, 4z, "

where q = kr§|2r,. (4-4)

*Lnrgexp (¢2) (1—erfy), (4-3)

This result may also be derived directly from (3-8) by setting ¢’ = 0, introducing the auto-
correlation function (8-15), (3:17) and integrating through the scattering layer, which
provides a check (Uscinski 1967).

Use of (3-21), (3-23) and the property of p given in (3-24) leads to

ST — BLER(2Z, (4:5)

and so from (4-3) the ‘coefficient for total scattering’ for a normally incident wave is

£(0) = wk*mexp (¢%) {1 —erfg}. (4-6)

The properties of p(0) are discussed by Uscinski (1967) who showed that in the majority
of cases of interest, where the irregularities are not greatly lengthened in the direction of
wave propagation, ¢ > 1 and the ‘coefficient of total scattering’ has the asymptotic value

p(0) ~ p2k2/mr,. (4-7)

The ‘coefficient for total scattering’ for arbitrary angle of incidence is obtainable in
principle by integrating (4-2) with respect to @, . While the ¢, integration may readily be
performed, it is more difficult to carry out the integration with respect to ¢. If we assume
that 7, is not very much greater than r,, the term involving r, may be omitted from the
exponent of (4:2) which may then be integrated with respect to ¢, to give

p(0') = f(0) (4:8)
which is independent of the angle of incidence for small angles.
On the other hand if 7, > r, then the term involving 7, may be omitted and (4-2) inte-

grated to give B(0") = Lk3umr2[1 —erf (3r,k0"%)] (4-9)

which is not independent of the angle of incidence except for extremely small ¢'.

In the remainder of the paper, which deals with multiple scatter, it will be assumed that
the maximum value of the axial ratio r_/r, is less than about 20. In view of the restriction ()
of § 1 this means that #(¢') ~ $(0), and enables the effect on the angular spectrum of multiply
scattered radiation, for axial ratios up to 20, to be examined using the methods of this paper
If this value for £ is set in (4-2) the following expression is obtained

pO',4"50,¢) = —exp[ a¥{t-+t' —2(tt")} cos g} — b2 (t—1t')?], (4-10)

77 - Vor. 262. A.
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where a% = r3k%4, b%=rk?/16. (4-11)

This is the form for p(¢’,¢’, 0, $) which will be used later on in § 6 in the general equations
for multiple scatter.

5. SCATTERING OF POWER BY A THIN LAYER
The processes occurring when power incident on an elementary layer is scattered will now
be examined. This is necessary in order to determine how the quantities S}, $, and K, defined
by (2-1), change when the waves are re-scattered by the medium. This allows the single
scatter treatment to be extended to deal with the case of multiple scatter.
Let a very thin phase changing screen be situated at the plane z = z" and suppose that
the phase change A® which it produces includes a spatial Fourier component for which

AD = AD cos (kxsin 0 —¢). (5-1)

This is like the screen considered by Ratcliffe (1956, § 3-4) who discussed only the case ¢ = 0.
Here the spatial phase ¢ is different for different members of the assembly. The factor
ksinf in (5-1) is the same as Ratcliffe’s factor 2u/d.

Suppose that a plane wave with field £ = e~i#7is incident on this screen. Then Ratcliffe’s
method shows that the scattered wave just below the screen includes a contribution

exp (—ikz") exp {—iA®D, cos (kxsin§—¢)} (5-2)
or, since A, is extremely small
| exp (—ikz’) [1 —iA®, cos (kxsin0—)]. (53)

Here the first term is the unscattered incident wave, and the remaining term is the scattered
wave, composed of two oblique plane waves whose total field is in quadrature with the
incident wave. For other values of z beyond the screen (z > z’) the fields (5-3) become

exp (—ikz) [1—1A®, exp{—ik(z—2z") (cos—1)}cos (kxsinf—e¢)]. (5-4)

Here the factor exp {—ik(z—2z") (cos—1)} occurs because of the different phase velocities
in the z direction of the incident wave and the pair of oblique scattered waves. The separate
component plane waves in the scattered field are found by expressing the last cosine in (5-4)
as the sum of two exponentials. One of them is given by

— 3iAD, exp {—ikz'} exp {—ik[(z—2") cos 0+« sin 0] +ie} (5-5)

and the other by reversing the signs of sin# and ¢ in (5-5).

In the single wave (5-5) the phase depends upon #, and so although the total power flux
0,40, = Pis constant, the co-phased and quadrature powers depend on x. For an assembly
of screens, with a random distribution of the spatial phase ¢, the assembly averages would
give 0, = 0, = P, k = 0, and these are independent of x. When the second wave is added
to (5-5) the resultant co-phased power at the screen is zero and the assembly averages give
0y = 2P, 0; = k = 0. Thus it is permissible to treat the two waves as though they separately
have ¢, = P, o, = k = 0 at the scattering layer.

This result applies more generally to a set &/ of component scattered waves with their
wave normals in the range 0 to 04-df, ¢ to ¢+ dg. If they were produced by the scattering
of & normally incident wave, then there must also be present another set # of components of
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MULTIPLE SCATTERING OF WAVES IN IRREGULAR MEDIA 619

equal amplitude, with wave normals in the range ¢ to §+df, ¢+7 to ¢+dp+n. Each of
these sets may be taken as having ¢; = x = 0 and equal values of ¢,. When, later on, the
integration with respect to ¢ is done, these two values of ¢, are added together to give the
correct total o,.

The set «# of components might, however, be produced by second scattering of another
set € of component plane waves with wave normals in the range ¢’ to §'+d6’" and ¢’ to
¢’ +dg¢’, which were themselves produced by the scattering of a normally incident wave.
There must then be a set 2 with normals in the range ¢’ to ' +df’ and ¢’ +7 to ¢’ +d¢’+7
equal in amplitude to #. The resultant of ¥ and 2 is in quadrature with the incident wave.

#'6,¢")
: 8(6,¢)

\@(31
'ﬂg”( 0’// ¢/{+ 77)

Frcure 3. Formation of corresponding wave sets when one wave set is scattered.

A

Second scattering of 2 would then produce the set # described above and the resultant
of & and # is in quadrature with the resultant of ¢ and 2. Thus by an extension of the
argument for single scatter it is permissible to treat the set .« as though it were in quadrature
with the set ¢ from which it was produced by scattering. The argument can clearly be
extended to deal with waves which are scattered three or more times.

Of course scattering of the set € or 2 produces other sets like </, with components in all
angles 0, ¢. So far attention has been directed only to the specific set &/ with normals in the
range 0 to 0+ df and ¢ to §+dg. Of the other sets like < there would be one, say <", with
normals in the range 6" to 0" 4df", ¢" 4 to ¢" +n+d¢”, and of the other sets like #Z there
would be one, say £”, with normals in the range 6" to 6" 4-d@”, ¢” to ¢" +dg” (see figure 3).
Theresultant of «7” and #" immediately after scattering isin quadrature with the resultant of
% and 2 immediately before scattering. Thus the resultant of the pair «7, # and of the pair
/", B" start out from the scattering layer in phase with each other. If the angle ¢ of the
set o, 4 is not the same as the angle 6” of the set «#”, #”, the phase of these resultants will

differ when they have travelled some distance from the scattering layer.

The use of these concepts makes it possible to study how S, S, and K, the co-phased and
quadrature scattered power and the un-normalized correlation coefficient of the scattered
power, behave when the waves are re-scattered by an elementary layer. Consider the
scattered field £, with co-phased and quadrature components R and I respectively, to be

772
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incident on a scattering layer. On passing through the layer E, acquires an increment 0E,
whose co-phased and quadrature components may be written R and 0/ respectively. Then

from (2-1) 58, — 2(R SR+ (SR?),
08, = 2181y + (d1?), (5:6)
0K = (IdRY+ (R IY+ (Sl SR).
Since the incremental field may be taken to be in quadrature with the field of the incident
wave at the scattering layer, an incident R gives rise to 8/, and an incident 7 gives rise to 0R.
This may be indicated symbolically by writing
0 = MR, 1

SR — — MI,| (57)

where M is an integral operator similar to that on the right-hand side of (3-8).

Assembly averages with one d, e.g. (RdI), involve the assembly average of M whose
integrand contains 7, to the first power. But the assembly average of 7, is zero, and so all
products in (5-6) which contain only one § term give zero. Thus (5-6) becomes

58, = M2S,, 88, = M?2S,, 0K =—M?K. (58)

These relations are still valid if S}, S, and K refer only to that part of the incident wave
whose component plane waves are the set ¢ with normals in the range ¢’ to §'+df#" and
¢’ to ¢’ ++d¢’, while 85, 85, and 0K refer to that part of the scattered wave whose component
waves are the set o/ with normals in the range 0 to 0+ df and ¢ to §+dg. In this case the

integral operator is ALY, 85 0, 8) cos O
as given by (3-23), and the relations (5-8) become, since cos 0 ~ 1,

00,(2,0,8) = pLP(0',¢"; 0,4) 75(2, 0", 4"),
802(2’ 0) ¢) = ﬂLI)(ﬁ/) ¢,: 0, ¢) | (Z) 0,9 ¢’)3 (5'9)
8K<Za g, ¢) = —-ﬁL])(ﬁ', ¢,; g, ¢) K(Z) v, ¢/)

6. SCATTERING BY AN EXTENDED MEDIUM

Suppose that a plane wave is normally incident on a medium consisting of many
elementary layers of the kind considered in § 3. Let its electric field be

E(z) emikz, (6:1)

The object is now to find §,(z), §,(z), K(z) and the unscattered power | E(z) |2 of the incident
wave when a distance z has been traversed. It is assumed that each elementary layer is too
thin for multiple scatter to be important within it, but it scatters both the incident wave
which reaches it, and also waves which have previously been scattered by other elementary
layers. Thus S, S,, K change as the medium is traversed. Their rates of change will be found
by deriving first the rates of change of their angular spectrum components (2-5), namely

L n@hd), Lnhd), Lrz0) (62)
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MULTIPLE SCATTERING OF WAVES IN IRREGULAR MEDIA 621

thus giving differential equations which can be solved by stepwise integration proceeding

through the medium. The solutions may then be integrated over ¢ and ¢ to give S,(z),
S$3(2), K(z).

There are four mechanisms contributing to the rates of change (6-2).

(a) Scattering of the incident wave
When the incident wave (6-1) first enters the medium, at z = 0, its power flux is

I1(0) = E3(0)/2Z,. (6-3)
Power is removed from it by scattering at the rate given by (4-5) with L = dz so that
ll(z) )0z = —pII(z). (6-4)
Thus the power flux I1(z) of the incident wave at any z is
I(z) = T1(0) exp (—8), §= f z/?(z) dz. (6:5)

The scattered power is distributed as an angular spectrum and contributes to the rates
of change (6-2). This contribution may be found by using (5-9), and (6-5) (with L = dz)
since these relations, which were derived for the general case of an already scattered field,
are valid for the unscattered incident wave also. In this case, however, because the incident
wave itself is taken as phase reference, all the unscattered power arriving at any layer is
co-phased and has no quadrature component, and its K is zero. Thus in the absence of
other effects '

V1 (5,0,6) = 5 (2,0,4) = 0 (66)
and 2 (2,0,6) = $p(0, 43 0) TI(2). (67)

(b) Removal of power by scattering
When the power flux in the small angular range ¢ to /4-df, ¢ to ¢+ d¢ impinges on an
elementary layer, a small amount of it is scattered. The ratio of total scattered power flux
to incident power flux is given from (3-23) by #dz. This applies for both the co-phased and
quadrature power fluxes ¢, and o,, as well as for the un-normalized correlation coefficient «.
If this were the only effect it would give

do oK
?Z' = _16)013 3—22 - _ﬁ029 92 = "“ﬁK' (6'8)

(¢) The distance effect

The scattered power is treated as a spectrum of plane waves travelling at different angles.
It was shown in § 5 that for every wave with its normal in the direction 8, ¢ there is another
wave of equal amplitude with its normal in the direction 6, -+, so that the phase of the
resultant does not depend on x and y (except for a plus or minus sign which does not affect
the quantities oy, 0y, k, as can be seen by setting y = y -+ in (2-2)), but only on z, see (5-4).

The phase reference is the unscattered wave e i#2, The phase of a scattered wave,
travelling obliquely, changes with respect to this reference as z increases. The factor
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exp{—ik(z—z') (cosf—1)}in (5-4) gives the change in phase of the scattered wave relative
to that of e=1#2 in advancing from z’ to z. Thus in advancing this distance the scattered wave
leads the phase reference by a phase angle:

¥y =k(1—cosf) (z—2'). (6-9)
If 7}, 05, " denote the values of ¢,, 7,, kK where z = z’ for the wave (5-5) and its partner,
and if 0y, 0, « are their values for any other z, then (2-2) gives
0y = 0y cos?y+oysin? y — 2« sin y cos y,
0y = oy sin? y+ o’ cos? y+ 2« sin y cos y, (6-10)
k = —(05—07) siny cos y +«’(cos?y —sin?y).
Differentiation of (6-10) with respect to z, and use of (6-9) to find dy/dz gives
do,[0z = —2kk(1 —cosf),
00,/0z = 2kk(1 —cosf), (6-11)
Ok|0z = — (04—0,) k(1 —cos0).
In the absence of other effects, equations (6-11) give the rates of change (6-2) due to the fact
that the scattered radiation is travelling at an angle to the incident plane wave which is the

phase reference.
(d) Multiple scatter
Finally, increments of ¢;, ¢, and x may be produced by scattering of waves which have
been scattered one or more times. The component waves impinging on an elementary layer
with wave normals in the solid angle d{)’ = sin§’ d¢’ d¢’, i.e. in the range 0" to 0'-+d¢’,
¢’ to ¢’ +d¢’, give increments which may be obtained from (5-9). When integrated with
respect to d()’ these give the contribution due to multiple scatter from all angles:

0r,(2,0, )10z = B [ [0, 45 0,0) 0,(2, 0, ") 402,
0s(z,0, )10z = § [ [p(0,45 0, 8) o1(2,0',¢") AL, (612)

oK (2,0, )10z = — [ [p00,0'; 0,9)x(2,0',8") 4@

7. DISCUSSION OF THE EQUATIONS
The four contributions of § 6, equations (6:6)—(68), (6:11), (6-12), are now added to give

(558) 91020, 8) = 26(2,0,8) kcos0=1)+4 [ [p(0',8'5 0,6) 0s(2,0', ),

(52#) o2tz 0. ) — B0, 0) 11(2) —2x(2,0,) K(cos6—1)
8 [ [p0.60.9)m (2.0, 9y a0, p (1)
(52+8) (2,0,8) = (0a(2,0,6) —0,(2,0, )} k(cost—1)
8 [ [p0,03:0,0) 52,0, ) dex.
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These equations are completely general. They are now simplified by changes of notation
and by making special assumptions as follows:

1. The medium is statistically isotropic with respect to rotation about the z axis. There-
for g, 0, and « are independent of ¢.

2. The function p(0,$,0) is independent of ¢ which will be omitted. The function
p(0',¢"; 0,¢) depends only on the difference ¢’ — ¢ and when the ¢’ integration is performed
in (7-1) the result is independent of ¢. Thus ¢’ and ¢ will be omitted from the bracket.

3. Itis assumed that £ is independent of z so that (6-5) gives
II(z) = 11(0) e~#=.
Further, the three left-hand sides of (7-1) are each of the form e #?J(Ue#?)/0z where U
denotes 0y, 0, or k. This suggests the use of new variables (¢, 7y, ) €#2.

4. Some shortening is achieved by using the combinations ¢,+ 0y, 0,— 0}, 2« instead of
0y, 05 and k. The following new variables are therefore introduced

Pi(z,0) = {04(2,0,¢) +01(2,0, )} e/,
Py(z,0) = {0,(2,0,9) —0,(2,0, §)} e/, (7-2)
Py(z,0) = 2«(z,0, ¢) eP=.
Then from (7-1), on adding and subtracting the first two equations,
OP,(2,0) [z = fp(6, 0) TL(0) +4 f f H(0,0 N, (7-3)
OP,(2,0) 0z = fp(0, 0) TL(0) — 2P, (2, 0) k(cos —1) — f f 5(0',0) Py(z,0)dQY,  (7-4)
OP,(z,0)/3z = 2P,(z, 0) k(cos f—1) p’”p (@,0) Py(z,0") dQY'. (7-5)

Particular forms for the functions p(8, 0), p(0,0") derived in § 4, equation (4-10) may now
be introduced and the following changes of variable made

l=pz, 7=a%. (7-6)
Since the case where the total angle of scatter is small is being considered then
(cosf—1) » — 3¢ (7-7)
and for convenience the incident power may be given the value 4
I1(0) = E3(0)/2Z, = 1/a®. (7-8)

This latter step is permissible since I1(0) may be measured in arbitrary units.
When equations (7-3)—(7-5) are thus simplified and the integration over ¢’ performed in
the terms on the right-hand side, the following set of equations results:

oP,

¥ L(l,7) = exp (—7—D1?) +exp (—7—Dr1?)

x f " exp (—1'—D[r'2—211']) P,(L,7") L2(rr )W dr’,  (7-9)

oF, 2(l,7) = exp (—7—D12) + ArP;(l,7) —exp (—7—D1?)

b
xf exp (—1'— D[1'2—2r7']) By(l,7') I{2(rr" )y dr’,  (7-10)
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oP,

2 (l,7) = —A1P,)(I,7) —exp (—7—D7?)

X f :exp (—7' = D[r2—2rr')) Py(L, 7)) L2(rr) B dr’ (7-11)

(1, denotes a modified Bessel function).
It is interesting to note that these equations contain only two parameters,

D = (r,\j2m3)? = 1/4¢? (7-12)
d A — 2k(1—cos ) fr — (L) (7-13)
an = 2k(1—cos )/'37_5173 i)

‘The parameter D determines the effect of the axial ratio ,/r, on the scattering. Since the
wavelength of the radiation must be much less than the smallest scale size of the irregularities,
and since the largest axial ratio dealt with here is assumed to be less than about 20, D is
restricted to values less than 0-1. The effect of D on the scattering will be examined in detail
in § 11, where it is shown that for values of less than 0-1, D may virtually be neglected and
equations (7-9)—(7-11) thus simplified.

In cases of practical interest equations (7-9)—(7-11) contain only one parameter A. This
parameter, which couples equations (7-10), (7-11), is a measure of the relative importance
of multiple scatter (6d) to the distance effect (6¢) as mechanisms determining the passage
of the scattered power from quadrature to co-phased power over the region of interest. If
A approaches zero, which may result from large r, or r,, the angle through which the
radiation is scattered is very small indeed, as may be seen from (4:10). Since it is travelling
virtually parallel to the incident wave which is the phase reference, a scattered wave in the
angular spectrum does not experience any significant phase shift relative to the reference
until it has covered a very large distance, and so the scattered power tends to remain in
quadrature. However, in travelling this distance it may be re-scattered many times, especi-
ally if 42 is not excessively small, thus producing a co-phased scattered component. If 4 is
very small then multiple scatter is the important mechanism leading to the equalization of
co-phased and quadrature scattered power.

If 4 is large, which results from small 7y, 7,, 42, then the scattered power is spread over
a range of angles which is not small, as may be seen from (4:10), and the phase of the
scattered wave changes rapidly relative to that of the incident wave as z increases. This
means that before significant multiple scatter can take place a co-phased scattered com-
ponent is produced due to the distance effect alone. Thus for large 4 the distance effect is
the chief mechanism leading to the equalization of co-phased and quadrature scattered
power and the whole process may be treated as a case of single scatter.

Analytical solutions for the equations (7:3)—(7-5), (7-9)—(7-11), may be obtained in these
two extreme cases noted above, i.e. 4 very large and very small, in cases of practical interest
where D may be neglected.

8. ANALVYTICAL SOLUTIONS

Analytical solutions for equations (7-3)—(7-5) may easily be obtained in the extreme cases
of 4 very large and very small if the scattering cross-section given by (4:10) is used and the
term involving 7, in the exponent is neglected to give

p(0;0') = a?n~Vexp [ —a*{t+t' —2(tt")* cos ¢y}]. (8-1)
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In the small angle approximation this cross-section gives results which are very close to those
obtained by using the full form (4-2), provided that 7, is not very much larger than ;. This
is demonstrated by the full numerical solution of equations (7-9)—(7-11) when the 7, term
is included, § 11.

Case 1. A very large. As pointed out at the end of the previous section this case may be
treated as one of single scatter over the region of interest, and the integrals on the right-hand
side of equations (7-:3)—(7-5) omitted. The resulting equations may readily be solved for
P, P,, and P,, since these three quantities are all zero when z = 0.

Then from (7-2)

0,(2,0,8) = §fe#2p(0,0) I1(0) z[1—sin (2¥,) /201 (8-2)

0y(2,0,4) = $Be72p(0, 0) 11(0) 2[1+sin (2y,) [210]; (8-3)
k(z,0,8) = §fe#p(0,0) 11(0) 2[ (1 —cos 2yy) /2¥,], (8:4)

where Yo = kz(1—cosf). (8-5)
If (8:1) is introduced into equations (8-2)—(8-4) they may be integrated over f and ¢ to give
S1(2) = e F=11(0) z I:l ~§%2 arctan (QBZ):I , (8-6)

Sy(2) = ypeP<T1(0) 2 [1 +5 parctan (sz)] , (8+7)

K(z) = e ﬂ~H(0)z———ln [1+ (2B2z)?], (8-8)

where B = 2/kr3. (8-9)

These results can be derived directly from equation (3-8) by other methods for the special
case §' = 0, which provides a check. This has been done in another paper by Uscinski (1967)
who gives a full discussion of the results for the single scatter case. Similar results were
obtained by Obukhov (1953) and Chernov (1960) using the ‘method of smooth perturba-
tions’. The extra factor exp (—fz) in expressions (8:6)—(8-8) occurs because the attenuation
of the unscattered wave has been taken into account in the present paper.

Case 2. A very small. The appropriate equations for this case may be obtained by setting
both 4 and D equal to zero in (7-9)—(7-11). Exact solutions of the resulting equations may
be obtained by successive approximation. A first approximation to the solution is obtained
by neglecting the integral terms and solving the resulting equations. This approximate
solution is set into the integral and the equations solved again to give a better approximation.
The process is repeated and solutions in the form of infinite series are obtained:

P, :é;l J—.l'—jjexp(——r/j), (8-10)
--35F ), (811)
P, =0, (812)

where 7 is given by (7-6). When (7-2), (7-6), (3-22) and (4-11) are used, P, may be identified
with the angular spectrum of the total scattered power found by Fejer (1953) and Howells
(1960) who neglected the correlation of the irregularities in the z direction given by 7..

78 Vor. 262. A.
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The solution (8-12) is to be expected from physical considerations, since for 4 = 0 there
is no distance effect and all the co-phased scattered power is just as likely to be in anti-phase
as in phase with the incident wave, and the correlation, given by averages of products like
that in (2-1), is zero.

Use of (7-2), (7-6) and (3-22) gives

0,(2,0,¢) = exp (—f2) Z . @ ~v(é)§l(2—j~m~ exp{—a?sin?0/2j—1}, (8-13)
04(2,0,8) — exp (—f2) Ji : 2%’ ,)(22]]) oxp (—a@sin? /2], (814)
k(z,0,4) = 0. (8-15)

These equations may be integrated with respect to ¢ and ¢ to give
S,(2) = Ege~#?(cosh fz—1),
Sy(2) = Ege~Fzsinh fiz, (8-16)
K(z) =0.
Solutions of (7-9)—(7-11) for intermediate values of the parameter 4 have been obtained

numerically and are given in §10. The analytical solutions given above form bounding
curves for the family and afford a partial check on the numerical calculations.

9. NUMERICAL METHODS
As pointed out in §7, the parameter D which determines the effect of the axial ratio
r./ro on the scattering, may be neglected when 7,/r, < 20, and so equations (7-9)-(7-11)
may be simplified to give

G 0n) = exp(=n)+exp (=) [ exp (—1) Bllr) B2 (o1
3;; (l,7) = exp (—7) +ATP(l, 7)—exp(——7)f exp (—7") By(l,7") I{2(rr) 2} d7',  (9-2)
3;; (l,7) = —A1Py(l,7) —exp (—7) f: exp (—1') Py(1,7") I{2(r7") ¥} d7'. (9-3)

The effect of D will be discussed more fully in § 11, where it will be shown why it may be
neglected in cases of practical interest.

For the purposes of numerical solution, the integro-differential equations (9-1)—(9-3)
were expressed as a set of simultaneous first-order differential equations. This was achieved
by expressing the integrals as sums, using Gaussian quadrature and Gauss-Laguerre quadra-
ture, c.f. Salzer & Zucker (1949) and Abramowitz & Stegun (1964). A set of n discrete values
of 7 was chosen and the functions P(r) were evaluated for these values only. Equations
(9-1)—(9-3) then become

2P,
CH0 = exp (— 1) +exp (—7) z (9-4)
oP,
52(:) exp (—7,) + A1, Py ;) —exp (— )z By s (9-5)
Py,

o =—An, P, m"eXP(‘“T)z P iy, (9-6)
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where F.u=PF(7), B ;=PFl1) (r=123),

Gij = w; 10{2(71'7]')%}

and w; is the weight corresponding to the point j.

The range of integration in the integrals on the right-hand side of (9-1)—(9-3) was divided
into two parts. The points 7; and weights w; were chosen so that the integrals could be
replaced by a Gaussian quadrature over the first part of the range from 0 to @ including the
first sixteen points, and by a Gauss—Laguerre quadrature over the second part of the range
from a to co covered by the remaining eight points. Thus

f:C_T'f(T') dr’ zjif(%) W), (9-7)

where w; = exp (—7;) g;,j < 15 and g; are Gaussian weights, and w; = exp (—a)/;, j > 16
and /; are Gauss—-Laguerre weights.

The resulting set of coupled differential equations (9-4)—(9-6) was solved numerically by
step-wise integration using the Adams—Bashforth technique. The integration commenced
at the boundary of the medium where [ = 0 and the functions P are all zero, and proceeded
as far as necessary through the medium giving the required functions P. This was done for
different values of the parameter 4, and it was found that as 4 became larger it was necessary
to choose progressively smaller steplengths of / in order to avoid oscillation in the integration
routine.

The functions ¢,, 7, and « are obtained from the functions P at the points 7;, by using (7-2),
and may then be conveniently integrated numerically with respect to 7 with the same
points and weights, to give the required S}, S, and K.

Some partial checks on the numerical integration were made. The functions P, £, and P,
for the cases 4 = 0 and A large may be obtained analytically, see equations (8-10)—(8-12)
and (8:2)—(8-4). These were compared with the appropriate numerical results and their
agreement afforded a check on the correct functioning of the numerical integration of
equations (2-1)—(2-3). Similarly the analytical expressions for §), §, and K, for the cases
A = 0 and 4 large, as given by equations (8-16) and (8-6)—(8-8) respectively were compared
with the corresponding numerical results and afforded a check on the numerical integration
of the functions ¢,, 0, and « with respect to 7.

10. NUMERICAL RESULTS

Equations (9-1)—(9-3) were solved numerically for various values of the parameter

L (_Af_.)
- 2nt \Whrgr,

to give P,, P,, and P, and thus, from (7-2), 0y, 0, and «. The functions 7,(z,0), 7,(z,0) and
k(z,0) are plotted in figure 4 for some representative values of 4 at different distances
z = [/f in the medium.
When ¢,, 0, and « are integrated with respect to 0, they give §,(z), S,(z) and K(z) respec-
tively. These functions are shown in figure 5 for some values of the parameter 4.
78-2
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01+ 0y,
210"+ 5
PBz=0-2

S

le(j]" 0-6

2x10"

2x10"

2x10"

I ;
0 1 2 3 0

AT = asinf

Ficure 4. The functions o(z, 0), 0y(z,0), «(z,0) for various values of the parameter 4. The hori-
zontal scale is asin @, where a = }ryk. Unity on the vertical scale denotes the value of I1(0),
the initial power flux of the incident wave. The curve for 4 = 16 is a broken line so that it
can be distinguished. For 4 = 0, « is zero everywhere.
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FIGURE 4 (cont.). For legend see facing page.
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The normalized probability distributions of amplitude |E| and phase ¢ of the wave field
may now be found by setting the values of S}, and §, and K obtained above into (2-3),
integrating over all phases ¢ to give P(|E|) the amplitude probability distribution, and over
all amplitudes |E| to give P(¢) the phase distribution. This was done numerically and the
distributions are given in figure 6 for different distances in the medium and for some

05— A
4 _
S, %
I 4
16
8
- 64 _~16
8 4
2
- 0
A
Sl
l | l |
0 1 2 3
~0-05— 40
A=05 \
| I I L |
1 2 3

x = pz
Ficure 5. The functions $;, S, and K for various values of 4. Unity on the vertical scale denotes the

value of 11(0), the initial power flux of the incident wave. In the top figure the upper curves
are those of S,, the lower those of .

representative values of the parameter 4. As is to be expected the amplitude distribution
approaches a Rayleigh distribution for large fz where the unscattered field becomes very
small, while the phase distribution becomes uniform. For values of 4 and fz where K the
correlation is not negligible, the phase distributions are asymmetrical. This is to be expected
since for non-zero correlation K the equiprobability ellipse (see figure 1) is tilted with
respect to the phase reference axes.
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Since the probability distributions are known, it is a simple matter to find any required
average value of the amplitude or phase fluctuations at different depths in the medium. As
an example the mean square fluctuation of amplitude defined by

(E(2)|%) —<|E(2)])?

e 125 oy
was calculated numerically for different values of A4, using the probability distributions
obtained above to get the necessary averages. The results are shown in figure 7.

For fz > 2, & approaches closely the limit 2-726 which is the value for a Rayleigh distri-
bution of amplitude. Curves are also given in figure 8 for the mean square logarithm of the
amplitude (In?|E|). This is of interest since the results of some authors are given in terms of
this quantity (Chernov 1960; Tatarski 1961).

Average values of the mean square phase fluctuation (¥?) are given in figure 9.

It should be noted that there is comparatively small separation of the phase curves for
different values of the parameter 4, and this only in the region fz < 2. An expanded view
of this region is given in figure 9. Thus the quantity (¥?) may be useful since it gives an
estimate of the distance fz almost independently of the parameter 4. Moreover it attains its
limiting value of 3#? (for uniform phase distribution) more slowly than any of the average
quantities dependent on the amplitude, and so gives information on fz to greater depths in
the medium.

The average phase fluctuation (¥’) does not seem to have been investigated previously,
but is also of interest. Curves of this quantity are given in figure 10. It is interesting to note
how closely they follow the corresponding curves for the correlation K. The average phase
fluctuation (¥ is non-zero due to the fact that the phase distribution P(¢) is asymmetrical
when K is non-zero, and so the close connexion between {¥) and K is not surprising.

It is thus a simple matter to find any average field quantity at a distance z in an inhomo-
geneous medium of the type treated above once f and 4 have been determined for the
medium.

11. THE AXIAL RATIO PARAMETER [)

The parameter D = (r,A/2n7r5)? represents the effect of the axial ratio of the irregularities
r,/r, on the scattering. The results in this paper have been given for D = 0. The effect of
non-zero D on these results, and in particular on the form of the angular spectrum of the
scattered radiation will now be discussed.

The angular spectrum of the radiation scattered by an extended inhomogeneous medium
of the type considered in this paper was derived by Fejer (1953). In the notation of the
present treatment, the form he obtained was

e U .
00y =e"' 3 mmexp{—7[j} (11-1)
=1JJ

which is the solution of (7-9) with D = 0. Bramley (1954) showed that the same result could
be obtained by ‘collapsing’ the medium treated by Fejer (1953) into a physically thin layer
which imposed large phase modulations on the incident wave.

It was pointed out by Bowhill (19615), in §§2 and 3 of his paper, that both Fejer and
Bramley had neglected the correlation of irregularities in the direction of wave propagation,
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thus effectively assuming that D = 0. When correlation in the direction of wave propagation
is allowed for it is no longer possible, as pointed out by Bowhill, to ‘collapse’ an extended
medium into a thin layer. Taking this correlation into account Bowhill (1961 5) derived the

e 2726

| | l
05 1-0 15

Bz

Ficure 7. The normalized mean square amplitude fluctuation; & is defined in the text.

s — 0491

(In® |E])

Bz
Ficure 8. The mean square logarithm of the amplitude, the quantity calculated
by Chernov (1960) and Tatarski (1961).

form of the angular spectrum for an extended layer containing very weakly scattering
irregularities in the case when the incident radiation falls normally onto the layer. Section 4
derives the angular spectrum for such a layer in the case of oblique incidence and Bowhill’s
result may be obtained by setting ¢ = 0 in (4-2). The term in the exponent containing 7,
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gives the effect of correlation in the direction of wave propagation which, as pointed out by
Bowhill (1961b), leads to ‘forward scatter’ of the radiation and to a narrower angular
spectrum.

The angular spectrum in Bowhill (1961 5), and that given by (4-2) refer to the case where
single scatter only is of importance. The angular spectrum for multiply scattered radiation
was not derived by Bowhill, but may be obtained by solving equation (7-9) with D non-zero.

2x10" Gt o,

Pz=0"2

\\ 20
\
N
ZXIO—I F \\
D=01N\\ D=0
\\
\\
i N4 |
0 1 2 3
NT=asinf

Freure 11. The angular spectrum for D = 0 and D = 0-1. The horizontal scale is asin 6, and unity
on the vertical scale denotes the value of 11(0), the initial power flux of the incident wave.

Since the smallest scale size of the irregularities must be much larger than the wave-length
of the radiation, and since this paper deals with axial ratios of less than about 20, the
maximum possible value of D is about 0-1. In figure 11 the angular spectrum is given for
D =0 and D = 0-1 at different distances in the medium, and it is clear that while the
angular spectrum is somewhat narrower when D = 0-1 the effect is quite small over the
region of interest, i.e. for fz < 3.


http://rsta.royalsocietypublishing.org/

/.
/ B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MULTIPLE SCATTERING OF WAVES IN IRREGULAR MEDIA 637

The curves for S}, S, and K have also been calculated for D = 0-1 but differ only slightly
from those for D = 0. This is the justification for neglecting D in §9 of the paper and
presenting the results for the case D = 0. The results are only slightly different for D = 0-1,
and in a great many cases of interest D is very much smaller than this.

12. CONCLUSION

The present paper has shown that in a medium with weak random irregularities of
refractive index the probability distributions of phase and amplitude of the wave field are
functions of the quantities S}, S, and K. A set of general integro-differential equations has
been derived which enable ), S, and K to be found for a medium, provided that the auto-
correlation function of the irregularities is known. The specific case of a medium having
irregularities with a Gaussian autocorrelation function has been examined and §}, S, and K
found analytically for particular limiting cases of the parameter 4. Values of §;, §, and K
for intermediate values of 4 have been obtained numerically and are presented, together
with the corresponding probability distributions of the phase and amplitude fluctuations,
and their average values at different distances in the medium.
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Scholarship; he is indebted to Dr K. G. Budden, F.R.S. of the Cavendish Laboratory for
continued assistance and many helpful discussions, to Mr J. A. Ratcliffe, F.R.S. for valuable
discussions, and to Dr A. Hewish of the Cavendish Laboratory, who pointed out the need
for a theory of the type outlined in this paper.

He also wishes to thank Dr G.J. Daniell for advice on the numerical calculations, and
Professor M. V. Wilkes, F.R.S. for permission to use the Titan Computer in the University
Mathematical Laboratory, Cambridge.

ArpENDIX A. THE SCATTERED FIELD EXPRESSED AS AN ANGULAR SPEGTRUM
OF PLANE WAVES
The scattered field given by equation (3-8) will be expressed as an ‘angular spectrum’ of
plane waves by taking its two-dimensional Fourier transform. The function £ (X, ¥) in (3-8)
is a statistically stationary, random function of X and Y, so that the usual Fourier integral
expression gives a divergent integral. The function is therefore considered only within an
area defined by —iW < X < iW, —iW < Y < $W where W may be as large as desired.
Outside this range the function £,(X, Y) may be imagined to repeat its behaviour within
the range, so that it is doubly periodic, and may be represented by the double Fourier series

© > Fk,k .
E(X,Y) = _z Z —-(ﬁ?'i) exp{—i(k,X+£,Y)}, (A1)
where m, m’ are integers and k= onm/W, k= 2mm!|W. (A2)
X bl y ‘

Then the coefficients F//I¥ are obtained from the following expression for £:
W W
ko k) = f EX7) exp{1kX+k Y)}dXdy

Y A ————
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where E r,is the truncated value of £ given by (3-8) for —§W < X<{W, —iW<YV<{W
and by zero outside this range (see, for example, Bendat (1958), p. 40). An expression for
E, , can be found by replacing the two pairs of limits 4-co in (3-8) by + §W. This is per-

missible because Wis to be made indefinitely large, and in particular W > z. This change of
limits has the same effect as if the scattering layer were confined to the range

—3IW < xy < W, —3IW <y, < iW

so that there would be no scattered field if X, ¥ were outside this range. When later (equa-
tions (A 8) onwards) the squared modulus of (A 3) is used, the resulting factor 1/#2 on the
right-hand side ensures that the expression is the power flux per unit area for small ranges
dk,, dk, of k,, k,, and thus tends to a limiting value independent of W when W —co0.

If (3 8), with the limits modified as just indicated, is now inserted in (A 3), and if (3-7)
is used:

2 — W
Flkyk,) _Ek exp 1kzsecﬁ f_wf_wf fﬁwf 7y (%05 Yo» Zo) exp {—ikH}

w (z—2zo) secd’

x exp {i[ (k,—k,) X+ (k,—k,) Y]} dx, dy,dz,dXdY. (A4)

The exponent of (A 4) is a quadratic function of X, Y, so that the X, Y integrations are
a double complex Fresnel integral which can be evaluated by standard methods (see, for
example, Budden 19654, equation (11)) to give

iE, sec &’ exp (—ikzsec '’ L piw W .
Flkyk,) = —20 Bzl [ 7 mite v 20) exp fin(e—z0)}

x> "y W
X exp {il(k,— k) Xy (F,—,) Yil}dx, dyydz,,  (A5)
where o = [(k,—k;)?- (k,—k},)?+tan>0'{(k,—k;) cos ¢’ -+ (k,—k)sin ¢"}*] sec ' [2k. (A 6)
The power flux in the z direction for this one Fourier component is
FF*|2Z, W2,

where Z is the characteristic impedance of free space. The number of component plane
waves having ,, k, in the small ranges ok,, 0k,, is dm dm’ = (W?[4n?) 0k, Ok, from (A 2). Thus
the power flux for these components is

FF*

8n2Z, Ok Ok, (AT)

where it is assumed that the angle between the wave normal and the z axis is small enough
for the effects of obliquity and polarization to be ignored. The product FF* is from (A 5),

FF* — E? sec20 k?

[(6) [myn exp (k=) Gry—6) + (k= K3) (o —16) — +9) (2020
x dxy dy, dzo day dyp dz), (A 8)
where y = [(k,—k;) cos '+ (k,—k)) sing'] tan 0", (A9)
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APPENDIX B. INTEGRATION WHEN THE AUTOCORRELATION FUNCTION p IS GAUSSIAN
The integrals with respect to &7 in (3-19) converge rapidly so that the limits may be
taken to be --0o. The limits for X, and Y,, however, remain - 1.
The £ integration is

[ 7 exp gty exp (-~ i€tk KD} dEQX, = Wiy Jmexp(— bk~ k)% (B1)

/4

and the 7 integration is similar. The remaining integrals involving {, Z, give

f: fww exp{—Cfri+i(a+y) {}d{dZ, = Lr,Jmexp{— }r?(a+7y)%. (B2)

Use of the limits -+oo for { (Obukhov 1953) means that L > r,. Thus the thickness of the
elementary slab must be chosen to be much larger than the correlation distance of the
irrcgularitics in the direction of wave propagation since powers scattered from near the front
and ncar the back of the layer are then mutually incoherent.

The integrals (B1) and (B2) are set in (3:19) and (3-6) is employed to give the result
(3-20) in § 3 of the paper. ‘
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